NSO evo3S Installation Manual **ENGLISH** www.simrad-yachting.com # **Preface** # **Disclaimer** As Navico is continuously improving this product, we retain the right to make changes to the product at any time which may not be reflected in this version of the manual. Please contact your nearest distributor if you require any further assistance. It is the owner's sole responsibility to install and use the equipment in a manner that will not cause accidents, personal injury or property damage. The user of this product is solely responsible for observing maritime safety practices. NAVICO HOLDING AS AND ITS SUBSIDIARIES, BRANCHES AND AFFILIATES DISCLAIM ALL LIABILITY FOR ANY USE OF THIS PRODUCT IN A WAY THAT MAY CAUSE ACCIDENTS, DAMAGE OR THAT MAY VIOLATE THE LAW. This manual represents the product as at the time of printing. Navico Holding AS and its subsidiaries, branches and affiliates reserve the right to make changes to specifications without notice. ### **Governing language** This statement, any instruction manuals, user guides and other information relating to the product (Documentation) may be translated to, or has been translated from, another language (Translation). In the event of any conflict between any Translation of the Documentation, the English language version of the Documentation will be the official version of the Documentation. # **Copyright** Copyright © 2019 Navico Holding AS. # **Warranty** The warranty card is supplied as a separate document. In case of any queries, refer to the brand website of your unit or system: www.simrad-yachting.com # **Compliance statements** # **Europe** Navico declare under our sole responsibility that the product conforms with the requirements of: CE under RED 2014/53/EU The relevant declaration of conformity is available in the product's section at the following website: www.simrad-yachting.com #### **United States of America** Navico declare under our sole responsibility that the product conforms with the requirements of: • Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation ▲ Warning: The user is cautioned that any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. → Note: This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that the interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - Reorient or relocate the receiving antenna - Increase the separation between the equipment and receiver - Connect the equipment into an outlet on a circuit different from that of the receiver is connected - Consult the dealer or an experienced technician for help #### ISED Canada This device complies with ISED (Innovation, Science and Economic Development) Canada's license-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device. La traduction française de ce document est disponible sur le site Web du produit. ### **Australia and New Zealand** Navico declare under our sole responsibility that the product conforms with the requirements of: - level 2 devices of the Radiocommunications (Electromagnetic Compatibility) standard 2017 - radiocommunications (Short Range Devices) Standards 2014 # Internet usage Some features in this product use an internet connection to perform data downloads and uploads. Internet usage via a connected mobile/cell phone internet connection or a pay-per-MB type internet connection may require large data usage. Your service provider may charge you based on the amount of data you transfer. If you are unsure, contact your service provider to confirm rates and restrictions. # **Trademarks** Navico[®] is a registered trademark of Navico Holding AS. Simrad[®] is used by license from Kongsberg. Bluetooth® is a registered trademark of Bluetooth SIG, Inc. C-Monster[™] is a trademark of JL Marine Systems, Inc. CZone[™] is a trademark of Power Products LLC. Evinrude® is a registered trademark of BRP US, Inc. FLIR® is a registered trademark of FLIR. HDMI[®] and HDMI[™], the HDMI Logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries. Mercury is a registered trademark of Mercury. NMEA® and NMEA 2000® are registered trademarks of the National Marine Electronics Association. Power-Pole® is a registered trademark of JL Marine Systems, Inc. SD^{TM} and microSD $^{\mathsf{TM}}$ are trademarks or registered trademarks of SD-3C, LLC in the United States, other countries or both. SmartCraft VesselView® is a registered trademark of Mercury. Suzuki[®] is a registered trademark of Suzuki. Yamaha® is a registered trademark of Yamaha. # **Navico product references** This manual refers to the following Navico products: - Broadband Radar™ (Broadband Radar) - GoFree[™] (GoFree) - Halo™ Pulse Compression Radar (Halo Radar) # **About this manual** Images used in this manual might not exactly match the screen on your unit. # **Important text conventions** Important text that requires special attention from the reader is emphasized as follows: → *Note:* Used to draw the reader's attention to a comment or some important information. ▲ Warning: Used when it is necessary to warn personnel that they should proceed carefully to prevent risk of injury and/or damage to equipment/personnel. #### Intended audience This manual is written for system installers. The manual assumes that the reader has basic knowledge about this type of equipment with regards to: - installation work to be carried out - nautical terminology and practices ### **Translated manuals** Available translated versions of this manual can be found on the following website: www.simrad-yachting.com # **Contents** #### 7 Introduction - 7 Parts included - 8 Front controls - 8 Connectors - 9 Card reader # 10 Installation - 10 General mounting guidelines - 11 Bezel fitment and removal - 12 Cable retainer installation - 12 Panel mounting - 12 Bracket mounting # 13 Wiring - 13 Wiring guidelines - 13 Power - 16 NMEA 2000 - 17 NMEA 0183 - 18 USB port - 19 J1939 port - 19 Ethernet - 20 HDMI ports - 20 Video in # 22 Software setup - 22 First time startup - 22 Software setup sequence - 22 The settings dialog - 22 System settings - 23 Alarms - 24 Radar installation - 26 Echosounder settings - 29 Autopilot settings - 30 Fuel settings - 32 Wireless settings - 32 Network settings # 36 3rd party support - 36 C-Zone - 37 Naviop - 37 Mercury - 37 Suzuki Marine - 37 Yamaha engine integration - 37 Evinrude engine integration - 37 Power-Pole - 38 FLIR camera setup # 39 Appendix - 39 Dimensional drawings - 40 Technical specifications - 42 Supported data Introduction 1 # **Parts included** - **A** Display unit - **S** Suncover - **C** Bezels - 1 set black bezels - 1 set silver bezels - **D** Power cable and connector block - **E** RJ45 to 5-pin Ethernet adapter cable - F NMEA 0183 connector block - **G** Documentation pack - **H** Cable retainer kit - I NMEA 2000 starter kit - → *Note:* Supplied with the system pack only. - J Panel mounting kit # **Front controls** # A Touch screen # B Power key - Press and hold: turns the unit ON/OFF - Short press once: displays the System Controls dialog - Repeat short presses: toggles through preset dimming levels - **C** WheelKey user configurable key, refer to "Configure WheelKey" on page 22. Default without an autopilot connected to the system - Short press: toggles between panels on split screen - Long press: maximizes active panel on split screen Default with an autopilot connected to the system - Short press: opens the autopilot controller and puts the autopilot in standby mode - Long press: toggles between panels on split screen # **Connectors** - A NMEA 2000 NMEA 2000 data - **B J1939** J1939 engine data - **C USB** mouse, keyboard or mass storage - **D NETWORK 1-3** Ethernet network - **E SD** microSD card reader - F HDMI OUT HDMI video output - **G VIDEO IN** composite video input - **H HDMI IN** HDMI video input - I NMEA 0183 NMEA 0183 data - **J POWER** 12 24 V DC input, external alarm and power control # **Card reader** A memory card can be used for: - Chart data - Software updates - Transfer of user data - System backup - → **Note:** Do not download, transfer or copy files to a chart card. Doing so can damage chart information on the chart card. # Installation # **General mounting guidelines** **A** Warning: Do not install the unit in a hazardous/flammable atmosphere. → **Note:** Choose a mounting location that will not expose the unit to conditions that exceed the technical specifications. # **Mounting location** Ensure that the selected area allows for: - · cable routing, cable connection and cable support - · connection and use of portable storage devices - viewing any LED indicators - · easy access to serviceable parts #### Do also consider: - the free space around the unit to avoid overheating - the mounting surface's structure and strength, with regard to the weight of the equipment - · any mounting surface vibration that might damage the equipment - hidden electrical wires that might be damaged when drilling holes #### Ventilation Inadequate ventilation and subsequent overheating of the unit will cause unreliable
operation and reduced service life. If possible, select a location where the vessel's air conditioning system can be used to control the temperature. Ensure that any ventilation holes are not blocked. # **Electrical and radio frequency interference** This unit conforms to the appropriate Electromagnetic Compatibility (EMC) regulations. To ensure that the EMC performance is not compromised, the following guidelines apply: - separate battery used for the vessel engine - minimum 1 m (3 ft) between the device, the device's cables and any transmitting equipment or cables with radio signals - minimum 2 m (7 ft) between the device, the device's cables and the SSB radio - more than 2 m (7 ft) between the device, the device's cables and the radar beam ### WiFi performance. It is important to test the WiFi performance before the location of the unit is decided. Construction material (steel, aluminum, or carbon) and heavy structure might affect WiFi The following guidelines apply: - select a location where there is a clear, direct line of sight between WiFi connected units - keep the distance between WiFi units as short as possible - mount the WiFi unit at least 1 m (3 ft) away from: - other WiFi enabled products - products that send wireless signals in the same frequency range - equipment that might generate interference #### **GPS** It is important to test the GPS performance before the location of the unit is decided. Construction material (steel, aluminum, or carbon) and heavy structure might affect GPS performance. Avoid a mounting location where metal obstacles block the view of the sky. A well placed external GPS module can be added to overcome poor performance. - **A** Optimal location (above deck) - **B** Less effective location - **C** Not recommended location - → **Note:** Consider the lateral swinging if mounting the GPS sensor high above the sea level. Roll and pitch might give false positions and affect the true directional movement. ### **Touchscreen** Touchscreen performance can be affected by the location of the unit. Avoid locations where the screen is exposed to: - direct sunlight - prolonged rainfall or floating water # **Bezel fitment and removal** → **Note:** The unit in the illustration is an example only. # **Cable retainer installation** With the cable and plug fitted in place, secure the cable to the retention bracket using a cable tie. Do not secure in such a way that it applies strain to the cable, or causes the plug or socket to be bent out of alignment. # **Panel mounting** Refer to the separate mounting template for panel mounting instructions. # **Bracket mounting** For bracket mounting refer to separate documentation supplied with the bracket kit (sold separately). # Wiring # Wiring guidelines #### Don't: - Make sharp bends in the cables - Run cables in a way that allows water to flow down into the connectors - Run the data cables adjacent to radar, transmitter, or large/high current carrying cables or high frequency signal cables. - Run cables so they interfere with mechanical systems - Run cables over sharp edges or burrs #### Do: - Make drip and service loops - Use cable-tie on all cables to keep them secure - Solder/crimp and insulate all wiring connections if extending or shortening the cables. Extending cables should be done with suitable crimp connectors or solder and heat shrink. Keep joins as high as possible to minimize possibility of water immersion. - Leave room adjacent to connectors to ease plugging and unplugging of cables ▲ Warning: Before starting the installation, be sure to turn electrical power off. If power is left on or turned on during the installation, fire, electrical shock, or other serious injury may occur. Be sure that the voltage of the power supply is compatible with the unit. ▲ Warning: The positive supply wire (red) should always be connected to (+) DC with a fuse or a circuit breaker (closest available to fuse rating). # **Power** The power connector is used for power, power control and for external alarm output. # **Power connector details** Unit socket (male) | Pin | Purpose | |-----|----------------| | 1 | DC negative | | 2 | +12/24 V DC | | 3 | External alarm | | 4 | Power control | # **Power connection** The unit is designed to be powered by 12 or 24 V DC system. It is protected against reverse polarity, under voltage, and over voltage (for a limited duration). A fuse or circuit breaker should be fitted to the positive supply. For recommended fuse rating refer to "Technical specifications" on page 40. | Key | Purpose | Color | |-----|-------------|-------| | A | +12/24 V DC | Red | | В | DC negative | Black | | С | Fuse | | # **Power control connection** The yellow wire in the power cable can be used to control how the unit is turned on and off. # Power controlled by power key The unit will turn on/off when the power key on the unit is pressed. Leave the yellow power control wire disconnected and tape or heat-shrink the end to prevent shorting. # Power control by supply power The unit will turn on/off without using the power key when power is applied/removed. Connect the yellow wire to the red wire after the fuse. → **Note:** The unit cannot be powered down by power button, but can be put in to standby mode (the screen backlight turns off). | Key | Purpose | Color | |-----|---|--------| | Α | Power control wire, connected to supply power | Yellow | ### Power controlled by ignition The unit will turn on once ignition is turned on to start engines. → **Note:** Engine start batteries and house batteries should have a common ground connection. | Key | Purpose | Color | |-----|--------------------|--------| | Α | Power control wire | Yellow | | В | Ignition switch | | # Power controlled by master slave bus The yellow power control wire can either be an input that will turn on the unit when power is applied, or an output that turns on other devices when the unit is powered on. It can be configured at the installation stage to control the power state of displays and compatible devices. When commissioning the system, the unit can be set to be a power control slave or power control master. | Key | Purpose | Color | |-----|--------------------|--------| | Α | Power control wire | Yellow | | В | Master slave bus | | If a unit is configured as power control master and turned on by the power key, it will output voltage on the power control bus. This will power on both other power master units and power slave units. If a unit is set to power control slave, it cannot be powered down using its own power key while a power control master unit is turned on. Pressing the power key will set the unit to standby. If all power control masters are off, power control slaves can be turned on using their own power key. This however will not turn on any other units connected to the power bus. ### **External alarm** For sirens that draw more than 1 A, use a relay. | Key | Purpose | Color | |-----|-----------------------|-------| | Α | External alarm output | Blue | | В | Siren and relay | | | С | Buzzer | | # **NMEA 2000** The NMEA 2000 data port allows receiving and sharing of a multitude of data from various sources. ### **Connector details** Unit socket (male) | Pin | Purpose | |-----|---------------------| | 1 | Shield | | 2 | NET-S (+12 V DC) | | 3 | NET-C (DC negative) | | 4 | NET-H | | 5 | NET-L | ### Plan and install an NMEA 2000 network An NMEA 2000 network consists of a powered backbone from which drop cables connect to NMEA 2000 devices. The backbone needs to run within 6 m (20 ft) of the locations of all products to be connected, typically in a bow to stern layout. The following guidelines apply: • The total length of the backbone should not exceed 100 meters (328 ft) - A single drop cable has a maximum length of 6 meters (20 ft). The total length of all drop cables combined should not exceed 78 meters (256 ft) - The backbone needs to have a terminator at each end of the backbone. The terminator can be a terminator plug or a unit with built-in terminator - A NMEA 2000 device - **B** Drop-cable - **C** Terminator - **D** Power supply - **E** Backbone # Powering the network The network requires its own 12 V DC power supply, protected by a 3 amp fuse. For smaller systems: connect power at any location in the backbone. For larger systems: connect power at a central point in the backbone to balance the voltage drop of the network. Make the installation such that the load/current draw on each side of the power node is equal. → Note: 1 LEN (Load Equivalency Number) equals 50 mA current draw. → **Note:** Do not connect the NMEA 2000 power cable to the same terminals as the engine start batteries, autopilot computer, bow thruster or other high current devices. # **NMEA 0183** The unit has a built in NMEA 0183 serial interface, providing both input and output. The port(s) uses the NMEA 0183 (serial balanced) standard, and can be configured in the software for different baud rates up to 38,400 baud. #### **NMEA 0183 connector details** | Unit socket (| mal | e) | |---------------|-----|----| |---------------|-----|----| | Pin | Top row | Bottom row | Purpose | | |-----|---------|---|----------|--| | 1 | Port 1 | Port 3 | TX_B (-) | | | 2 | Port 1 | Port 3 | TX_A (+) | | | 3 | Port 1 | Port 3 | RX_B (-) | | | 4 | Port 1 | Port 3 | RX_A (+) | | | 5 | Port 2 | Port 4 | TX_B (-) | | | 6 | Port 2 | Port 4 | TX_A (+) | | | 7 | Port 2 | Port 4 | RX_B (-) | | | 8 | Port 2 | Port 4 | RX_A (+) | | | 9 | Port 2 | Port 4 | Common | | | 10 | Port 2 | Port 4 | Shield | | | n | ' ' | 4 to 10 pin connector(s) can be used. The pin number (n) depends on the connectors location in the unit socket. | | | → **Note:** Ports 1 and 3 conform to the NMEA 0183 standard, while ports 2 and 4 adds Common and Shield connections to conform to NMEA 0183-HS.
These additional connections can be used if the connecting high-speed device supports it. # **Talkers and listeners** Only one talker (output device) can be connected to a serial input (RX) on the unit, in accordance with the NMEA0183 protocol. However, an output port (TX) on the unit may be connected to up to three listener (receiver) devices, dependent on the hardware capabilities of the receiver. # **USB** port The USB port can be used to: - connect a keyboard - connect a mouse - connect a storage device - · connect a card reader - → **Note:** If you want to read chart cards using a USB card reader connected to the USB port, an MI10 USB card reader is required. The USB devices should be standard PC compatible hardware. → **Note:** USB cable length should not exceed 5 m when using regular cables. Lengths over 5 m may be possible with the use of an active USB cable. #### **USB** connector details The unit is equipped with standard USB type-A connector(s). # **J1939 port** The J1939 port can be used for engine communication and diagnostics. This option is commonly used for diesel engines. ▲ Warning: Before connecting to the J1939 bus, ensure that your engine manufacturer not have restrictions for connecting other equipment to this bus. #### J1939 connector details Unit socket (male) | Pin | Purpose | |-----|----------| | 1 | Shield | | 2 | Not used | | 3 | CAN GND | | 4 | NET-H | | 5 | NET-L | # **Converter cables** Various converter cables are available for connecting to the J1939 port. # **Engine connection** For information about connecting an engine to the J1939 interface refer to the documentation supplied by the engine manufacturer. # **Ethernet** The Ethernet port(s) can be used for transfer of data and synchronization of user created data. It is recommended that each device in the system is connected to the Ethernet network. No special setup is required for establishing an Ethernet network. #### **Ethernet connector details** Unit socket (female) The unit is equipped with standard RJ45 connector(s). # **Ethernet expansion device** Connection of network devices can be made via an Ethernet expansion device. Additional expansion devices can be added to provide the required number of ports. # **HDMI** ports #### **HDMI** connector details The unit is equipped with standard HDMI (Type A) connector(s). # **HDMI** input The unit can be connected to an external video source to display video images on its display. #### **HDMI** out The unit can be connected to an external monitor to replicate video at a remote location. The image is shown on the external monitor at the units own native resolution, so the external monitor should support the same resolution or be able to scale. → **Note:** Some HDMI TV displays may apply over-scan, which will in effect crop the image possibly causing loss of important content. Check the display manual for an option to disable over-scan or adjust scaling. # Video in The unit can be connected to two composite video sources, and display video images on its display. - → **Note:** Camera cables are not supplied, and will need to be selected to suit termination BNC at the unit, and typically BNC or RCA plug at the camera end. - → **Note:** The video images will not be shared with another unit via the network. It is only possible to view video on the unit connected to the video source. - → **Note:** Both NTSC and PAL formats are supported. # Video in connector details Unit socket (female) | Pin | Purpose | |-----|---------| | 1 | Ground | | 2 | Signal | # Video input configuration Configurations to video input are made in the video panel. Refer to the Operator Manual for more information. 4 # **Software setup** # First time startup When the unit is started for the first time, or after a reset, the unit displays a series of dialogs. Respond to the dialog prompts to make fundamental settings. You can perform further setup and later change settings using the system settings dialogs. # Software setup sequence - **1 General settings** refer to "System settings" on page 22. - Make general settings as desired - Configure the power control - **2** Advanced settings refer to "Advanced" on page 23. - · Enable or disable features - Review the advanced setting options and make changes as desired - **3 Source selection** refer to "Network settings" on page 32. - Make sure that the proper external data sources have been selected - 4 Feature setup - · Configure specific features as described later in this chapter # The settings dialog The software setup is done from the settings dialog. # **System settings** # **Boat settings** Used to specify the physical attributes of the boat. ### Time Configure time settings to suit vessel location, along with time and date formats. ### **Configure WheelKey** Configures the action of the WheelKey on the front of the unit. #### PIN code Sets a PIN code to prevent unauthorized access to your system's settings. Note: Record the PIN code and store it in a safe place. When you establish password protection, the PIN code must be entered when any of the following are selected. After the correct PIN code is entered, all of them can be accessed without re-entering the PIN code. - · Settings, activated from the home page or system controls dialog - · Alarms, activated from the toolbar - · Storage, activated from the toolbar - · Store, activated from the toolbar # **Power control setup** Determines unit response to signal applied to the power control wire. Refer to "Power control connection" on page 14. This setting is only applicable if the yellow wire is used for power control. - Set to slave if the yellow wire is connected to ignition or to a stand-alone switch - Set to master to make this device turn other devices connected to the master slave bus on and off When a master unit is turned on or off, all units connected to the same master slave bus turns on or off. While a master unit is on, a slave unit cannot be turned off. If no master unit is turned on, slave units can be turned on or off individually. #### **Advanced** #### **Enabling or disabling features** Use the feature option to enable or disable features that are not automatically enabled or disabled by the system. ### **Alarms** # **Settings** List of all available alarm options in the system, with current settings. From this list you can activate, deactivate and change alarm limits. #### Siren enable The Siren enabled option must be set in order for the unit to activate the buzzer when an alarm condition arises. Its setting also determines the operation of the external alarm output. # **Radar installation** The radar system requires radar sensor specific settings in order to adjust for a number of variables found in different installations. → **Note:** The installation settings available depends on the radar sensor. #### Radar source In a system with more than one radar sensor, the device to configure is selected from this menu. → *Note:* Radars that support dual radar mode are represented twice in the source list, with an A and B suffix. #### Radar status Displays scanner information and scanner features, primarily used for information and to assist with fault finding. #### Adjust antenna height Set the radar scanner height relative to the water surface. The Radar uses this value to calculate the correct STC settings. #### Select antenna length Select the proper antenna length. # **Adjust range offset** The radar sweep should commence at your vessel (a radar range of zero). You may need to adjust the radar range offset to achieve this. If this is set incorrectly, a large dark circle in the center of the sweep might occur. You might notice straight objects such as straight sea walls or piers having curves or an indentation. Objects close to your vessel may appear pulled in or pushed out. Adjust the range offset as below when the vessel is about 45 to 90 m (50 to 100 yards) from a straight-walled jetty or similar feature that produces a straight line echo on the display. - 1 Point the vessel towards the jetty - 2 Adjust the range offset to make the jetty echo appear as a straight line on the display # Adjust bearing alignment This option is used to align the heading marker on the screen with the center line of the vessel. This will compensate for any slight misalignment of the scanner during installation. Misalignment that is not corrected for will compromise target tracking and can result in dangerous misinterpretation of potential navigation hazards. Any inaccuracy will be evident when using MARPA or chart overlay. - Point the vessel towards a stationary isolated object, or towards a far range AIS where the AIS icon matches the radar echo - 2 Adjust the coarse and fine bearing alignment so that the heading line touches the end of the selected object # Sidelobe suppression Occasionally false target returns can occur adjacent to strong target returns such as large ships or container ports. This occurs because not all of the transmitted radar energy can be focused into a single beam by the radar antenna, a small amount of energy is transmitted in other directions. This energy is referred to as sidelobe energy and occurs in all radar systems. The returns caused by sidelobes tend to appear as arcs. → **Note:** This control should only be adjusted by experienced radar users. Target loss in harbor environments may occur if this control is not adjusted correctly. When the radar is mounted where there are metallic objects near the radar, sidelobe energy increases because the beam focus is degraded. The increased sidelobe returns can be eliminated using the sidelobe suppression control. By default, this control is set to auto and normally should not need to be adjusted. However, if there is significant metallic clutter around the radar, sidelobe suppression may need to be increased. To adjust the sidelobe suppression value: - 1. Set radar range to between 1/2 nm to 1 nm and the sidelobe suppression to auto - **2.**
Take the vessel to a location where sidelobe returns are likely to be seen. Typically, this would be near a large ship, container port, or metal bridge. - **3.** Traverse the area until the strongest sidelobe returns are seen. - **4.** Change auto sidelobe suppression to OFF, then adjust the sidelobe suppression control just enough to eliminate the sidelobe returns. You may need to monitor 5-10 radar sweeps to be sure they have been eliminated. - **5.** Traverse the area again and readjust if sidelobes returns still occur. # **Sector blanking** Radar installed in close proximity to a mast or structure could cause unwanted reflections or interference to appear on the radar image. Use the sector blanking feature to stop the radar from transmitting on up to four sectors in the image. - → **Note:** Sectors are setup relative to the heading line of the radar. The bearing of the sector is measured from the center line of the sector. - → **Note:** Sector blanking should be applied very carefully to avoid reducing the radar's usefulness in identifying valid and potentially dangerous targets. Radar overlay on a chart # Adjust open array park angle The park angle is the final resting position of the antenna relative to the heading line of the radar when the radar is set to standby. The antenna will stop rotating at the desired offset. # Adjust local interference reject Interference from some onboard sources can interfere with the Broadband radar. One symptom of this could be a large target on the screen that remains in the same relative bearing even if the vessel changes direction. # **Halo light** Controls the levels of the Halo Radar blue accent lighting. The accent lighting can only be adjusted when the radar is in standby mode. → **Note:** The blue accent pedestal lighting might not be approved for use in your boating location. Check your local boating regulations before turning the blue accent lights ON. # Reset radar to factory defaults Clears all user and installer settings applied to the selected radar source, and restores factory settings. → **Note:** Use this option with caution. Take note of current settings first, especially those set by the operator if radar has already been in active service. # **Echosounder settings** A compatible echosounder module (or another unit which has built-in sonar) shared over the Ethernet network is required to view echosounder images on the unit. # Network echosounder mode The network echosounder mode setting selects whether only one or multiple echosounder sources can be selected at the same time. → **Note:** Changing the mode requires that all connected sources are restarted. ### **Overlay DownScan** When a DownScan capable transducer is connected to your system, you can overlay DownScan images on the regular Echosounder image. When overlay DownScan is activated, the Echosounder panel menu expands to include basic DownScan options. # Structure depth offset All transducers measure water depth from the transducer to the bottom. As a result, water depth readings do not account for the distance from the transducer to the lowest point of the boat in the water or from the transducer to the water surface. - To show the depth from the lowest point of the vessel to the bottom, set the offset equal to the vertical distance between the transducer and the lowest part of the vessel, A (negative value). - To show the depth from the water surface to the bottom, set the offset equal to the vertical distance between the transducer and the water surface, **B** (positive value) - For depth below transducer, set the offset to 0. # Use depth and temp data from Selects from which source the depth and temperature data is shared on the NMEA 2000 network. ### Installation Use this dialog to setup and configure available sources. #### Source Select this option to display a list of sources available for setup. The settings you make in the rest of the dialog pertain to the source selected. #### Search depth Noise may cause the echosounder to search for unrealistic depths. By setting the search depth manually the system displays echoes received from objects within the set depth range. #### Depth offset All transducers measure water depth from the transducer to the bottom. As a result, water depth readings do not account for the distance from the transducer to the lowest point of the boat in the water or from the transducer to the water surface. - To show the depth from the lowest point of the vessel to the bottom, set the offset equal to the vertical distance between the transducer and the lowest part of the vessel, A (negative value). - To show the depth from the water surface to the bottom, set the offset equal to the vertical distance between the transducer and the water surface, **B** (positive value) - For depth below transducer, set the offset to 0. ### Water speed calibration Water speed calibration is used to adjust the speed value from the paddle wheel to match the actual boat speed through the water. Actual speed can be determined from GPS speed over ground (SOG) or by timing the boat over a known distance. Water speed calibration should be performed in calm conditions, with minimal wind and current movement. Increase this value above 100 % if the paddle wheel is under reading, and decrease this value if it is over reading. For example, if the average water speed reads 8.5 knots (9.8 MPH) and SOG records 10 knots (11.5 MPH) the calibration value needs to be increased to 117 %. To calculate the adjustment, divide the SOG by the paddlewheel speed, and multiply the product by 100. Calibration range: 50-200 %. Default is 100 %. #### Water speed averaging Averages water speed by measuring your speed at a selected interval of time. Water speed intervals range from one to thirty seconds. For example if you select five seconds, your displayed water speed will be based on averaging over 5 seconds of sampling. Calibration range: 1-30 seconds. Default is 1 second. # Water temperature calibration Temperature calibration is used to adjust the water temperature value from the sonar transducer. It may be required to correct for localized influences to the measured temperature. Calibration range: -9.9° - +9.9°. Default is 0°. → **Note:** Water temperature calibration only appears if the transducer is temperature capable. ### Transducer type → **Note:** The transducer type is automatically set for transducers that support Transducer ID (XID) and is not user selectable. Transducer type is used for selecting the transducer model connected to the sonar module. The transducer selected will determine what frequencies the user can select during sonar operation. In some transducers with built-in temperature sensors, the temperature reading may be inaccurate or not available at all if the wrong transducer is selected. Transducer temperature sensors are one of two impedances - 5k or 10k. Where both options are given for the same model transducer, refer to paperwork supplied with transducer to determine impedance. #### Restore echosounder defaults Restore echosounder settings to the factory supplied defaults. #### ForwardScan installation Available when the ForwardScan feature is connected. For setup information, refer to the Operator Manual. # LiveSight installation Available when a LiveSight transducer is connected. For setup information, refer to the documentation following the LiveSight transducer. # **Autopilot settings** The Autopilot settings dialog depends on which autopilot computer that is connected to the system. If more than one autopilot is connected, the Autopilot settings dialog shows option for the active autopilot. The autopilot settings can be split between settings done by the user, and settings done during installation and commissioning of the autopilot system. - User settings can be changed for various operational conditions or user preferences. - <u>Installation settings</u> are defined during commissioning of the autopilot system. No changes should later be done to these settings. The following sections describe the installation settings per autopilot computer. For user settings, refer to the Operator manual. # **NAC-1 specific installation settings** #### Commissioning Used to calibrate your boat's steering (cable steer or hydraulic steering) with the NAC-1. → **Note:** The autopilot must be commissioned prior to first use and any time after autopilot default settings have been restored. #### Cable steer calibration → **Note:** The rudder source must be set to rudder feedback to be able to run this calibration Start the calibration process by selecting the rudder feedback calibration option, and follow the onscreen instructions. → **Note:** When centering the motor during the calibration process, ensure that the motor is centered visually when the dialog shows 0 value. If not, center the motor visually before pressing OK to align the physical position with the dialog value. When the calibration process is completed, select the rudder test option to confirm the calibration. If the calibration does not pass the rudder test: - confirm that motor is moving - confirm that the rudder feedback reading moves according to motor rotation - check the NAC-1 drive cable - confirm that the motor can be manually moved smoothly in each direction - check for other mechanical issues - check wiring connections - · repeat the rudder calibration. #### Hydraulic system calibration Virtual rudder feedback (VRF) calibration is used for vessels with hydraulic steering when no rudder feedback is available. → **Note:** The rudder source must be set to VRF to be able to run this calibration. Start the calibration process by selecting the VRF calibration option, and follow the onscreen instructions. - → **Note:** When the autopilot attempts to turn the motor during the calibration process, ensure that the motor movement is noticeable and that the motor is turning in the correct direction before selecting **Yes** on the
dialog. When **No** is selected, the NAC-1 reverses direction and increases power the next time it turns the motor during the calibration process. - → **Note:** You may have to select **No** more than once to ensure the pump provides enough power to turn the motor at hight boat speed. ### Steering response Used to increase or decrease the steering sensitivity. A low response level reduces the rudder activity and provides a more loose steering. A high response level increases the rudder activity and provides more tight steering. A too high response level will cause the boat to make S movements. # NAC-2/NAC-3 specific installation settings For setup and commissioning of the NAC-2 or NAC-3, refer to the commissioning manual included with the autopilot computer. # **AC70/AC80 Specific installation settings** The AC70/AC80 computers do not have any specific installation settings available in the MFD. → **Note:** The MFD cannot be used to configure or commission an AP70/AP80 system. For more information, refer to the documentation included with the autopilot system. # **Fuel settings** The fuel utility monitors a vessel's fuel consumption. This information is totaled to indicate trip and seasonal fuel usage, and is used to calculate fuel economy for display on instrument pages and the data bar. To use the utility, a Navico Fuel Flow sensor, or a NMEA 2000 engine adaptor cable/gateway with Navico Fuel Data Storage device must be fitted to the vessel. The Navico Fuel Flow sensor, does not require the use of a separate Fuel Storage device. Refer to the engine manufacturer or dealer for information on whether or not your engine provides a data output, and what adaptor is available to connect to NMEA 2000. Once the physical connection is made, ensure source selection is completed. Multiple engine installations using Fuel Flow sensors, or Fuel Data Storage devices, require setup of related engine location in the Device list. For general source selection information, refer to "Network settings" on page 32. ### **Vessel setup** The Vessel setup dialog must be used to select the number of engines, the number of tanks and vessel's total fuel capacity across all tanks. ### Fuel remaining measurement The Fuel remaining measurement can be determined from fuel used by engine(s), or fuel level from tank sensors. Nominal fuel consumption is required to set the scale on the fuel economy gauge. This value should be determined from experience, over time. Alternatively the boat builder or designer may be able to give an approximate value to use. - → **Note:** Fuel remaining measurement taken from level sensors while underway can get inaccurate readings due to vessel movement. - → **Note:** Nominal fuel consumption setting should be determined taking into account typical vessel loads. That is, filled fuel and water tanks, stowed tender, supplies, etc. # **Fuel flow configuration** After the number of engines is set, it is required to set which fuel flow sensor is connected to which engine. Under Device list on the Network page, view the Device Configuration dialog for each sensor, and set the Location to match the engine the device is connected to. **Unconfigure** - defaults the device which clears all user settings. **Reset Fuel Flow** - restores only the Fuel K-Value setting, if set in Calibrate. Only Navico devices can be reset. #### **Calibrate** Calibration may be required to accurately match measured flow with actual fuel flow. Access calibration from the Refuel dialog. Calibration is only possible on Navico's Fuel Flow sensor. - 1. Start with a full tank and run the engine as it would normally be operated. - 2. After at least several liters (a few gallons) have been used, the tank should be fully refilled, and the Set to full option selected. - 3. Select the Calibrate option. - 4. Set the actual amount used based on amount of fuel added to the tank. - 5. Select OK to save settings. The Fuel K-Value should now show a new value. - → **Note:** To calibrate multiple engines repeat the steps above, one engine at a time. Alternatively, run all engines simultaneously, and divide the Actual amount used by the number of engines. This assumes reasonably even fuel consumption on all engines. - → **Note:** The Calibrate option is only available when Set to full is selected, and a Fuel Flow is connected and set up as a source. - → **Note:** A maximum of 8 engines is supported using Fuel Flow sensors. #### **Fuel Level** With the use of a Navico Fluid Level device connected to a suitable tank level sensor, it is possible to measure the amount of fuel remaining in any equipped tank. The number of tanks must be set in Vessel Setup dialog, initiated from the Fuel setting options page, to allow discrete tank assignment of the Fluid Level devices. Select Device list on the Network page, and view the Device Configuration dialog for each sensor, and set the Tank location, Fluid type, and Tank size. For setting up the Instrument bar or a gauge on the Instrument page with Fluid Level device data, refer to the Operator Manual. - → **Note:** A maximum of 5 tanks is supported using Fluid Level devices. - → **Note:** Tank data that is output by a compatible engine gateway can also be displayed, however tank configuration for such a data source is not possible from this unit. # **Wireless settings** Provides configuration and setup options for the wireless functionality. For further details about wireless setup and connectivity, refer to the Operator Manual. # **Network settings** ### **Device name** Assigning a name is useful in systems using more than one device of the same type and size. #### **Sources** Data sources provide live data to the system. When a device is connected to more than one source providing the same data, the user can choose the preferred source. Before commencing with source selection make sure all external devices and networks are connected and turned on. #### **Auto Select** The Auto Select option looks for all sources connected to the device. If more than one source is available for each data type, selection is made from an internal priority list. This option is suitable for the majority of installations. #### Manual source selection Manual selection is generally only required where there is more than one source for the same data, and the automatically selected source is not the one desired. ### **Group source selection** The unit can use the same data sources that all other products on the network use, or alternatively use a data source independently from other units. If the unit is part of a source group, all source selection changes will affect all units belonging to the same group. → **Note:** In order to enable group selection, the unit must be set to the Simrad group. Devices with no selected group can use different sources than the rest of the network devices. #### Advanced source selection This allows the most flexible and precise manual control over which devices provide data. Occasionally auto select might not assign the desired source, which can be corrected using the advanced source selection. #### **Device list** Selecting a device in this list will bring up additional details and options for the device. All devices allow allocation of an instance number in the configure option. Set unique instance numbers on any identical devices on the network to allow the unit to distinguish between them. The data option shows all data being output by the device. → Note: In most cases, setting the instance number on a 3rd party product is not possible. #### **Diagnostics** Provides information useful for identifying an issue with the network. #### **NMEA 2000** Provides information on NMEA 2000-bus activity. → **Note:** The following information might not always indicate an issue that can be simply resolved with minor adjustment to network layout or connected devices and their activity on the network. However, Rx and Tx errors are most likely indicating issues with the physical network, which can be resolved by correcting termination, reducing backbone or drop lengths, or reducing the number of network nodes (devices). # UDB Provides information on Ethernet activity. #### J1939 Provides information on J1939-bus activity. #### SimNet groups This function is used to control parameter settings, either globally or in groups of units. The function is used on larger vessels where several units are connected to the NMEA 2000 network. By assigning several units to the same group, a parameter update on one unit will have the same effect on the rest of the group members. If any of the settings require discrete control, set the group to None. # **Damping** If data appears erratic or too sensitive, damping may be applied to make the information appear more stable. With damping set to off, the data is presented in raw form with no damping applied. #### **Calibration** An offset (positive or negative) can be applied to correct data inaccuracies from NMEA 2000 sources. → **Note:** Any calibrations made here will only be applied locally to this unit. Other devices on the network will not have these offsets applied. ### NMEA 2000 setup # Receive waypoint Select this option to allow another device capable of creating and exporting waypoints via NMEA 2000 to transfer directly to this unit. #### Send waypoint Select this option to allow this unit to send waypoints to another device via NMEA 2000. → **Note:** The system can only transmit or receive one waypoint at a time on creation of that waypoint. For bulk import or export of waypoints see the operator manual. # NMEA 0183 setup The NMEA 0183 port(s) must be set to suit the speed of connected devices, and can be configured to output only the sentences required by listening devices. #### Receive waypoint Select this option to allow a device capable of creating and exporting waypoints via NMEA 0183 to transfer directly to this unit. ### Baud rate This should be set to correspond with devices connected
to the NMEA 0183 input and output. The input and output (Tx, Rx) use the same baud rate setting. → **Note:** AIS transponders typically operate at NMEA 0183-HS (high speed), and will require the baud rate to be set to 38,400. ### Serial output Selection determines whether the data is output via Tx lines, and will enable editing of the output sentences list. # Serial output sentences This list allows control over which sentences that are transmitted to other devices from the NMEA 0183 port. Due to the limited bandwidth of NMEA 0183 it is desirable to only enable the data that is required. The less sentences that are selected, the higher the output rate of the enabled sentences. #### Ethernet/WiFi The NMEA 0183 data stream is output and made available to tablet devices and PCs, via WiFi or Ethernet connection. The dialogue provides IP and port data typically required for configuring the application on the third party device. → **Note:** Other MFDs cannot decode this information back to NMEA 0183, to use the data as a source. To share data a physical NMEA 2000 or NMEA 0183 connection is still required. # J1939 settings # Silent mode When enabled the unit only listens to the J1939 port(s). When disabled the unit sends a request to the connected device for specific data. → *Note:* For communication details refer to the engine manufacturer. 5 # 3rd party support # **C-Zone** ### **CZone connection to NMEA 2000** When interfacing to CZone network it is recommended to use a BEP Network interface bridge to join the two network backbones together. The CZone / NMEA 2000 Network interface bridge isolates the power of the two networks, but allows data to be freely shared between both sides. The Interface Bridge can also be used for expansion of the NMEA 2000 network, when the maximum node limit (node = any device connected to network) for the network has been reached or the maximum cable length of 150 m will be exceeded. Once an Interface Bridge has been fitted, a further 40 nodes and additional cable length can be added. The Network Interface is available from your BEP dealer. For more information please refer to the BEP web site www.bepmarine.com. #### **CZone setup** In order to communicate with the CZone modules connected to the network, the unit must be assigned a unique CZone Display Dipswitch setting. The functionality of the CZone system is determined by the CZone Config File which is stored on all CZone modules and the NSO evo3S. The file is created using the CZone Configuration Tool, a specialized PC application available from BEP Marine Ltd, and associated CZone distributors. For more information, refer to the documentation provided with your CZone system. #### Assigning the dipswitch setting Every product capable of controlling and viewing CZone devices must be assigned a virtual dipswitch setting. This setting is unique for each device. Typically it is set after the configuration file already exists on the CZone system, but it may also be set in advance. To do so, access the CZone menu on the Settings page. When the configuration is already available on the network, it will immediately commence uploading to the NSO evo3S once the dipswitch is set. Allow this to complete, without interruption. #### Setting CZone to display at startup With this option selected, the CZone control page is shown first, every time the NSO evo3S is powered up. # Backlight Enabling this causes the NSO evo3S to synchronize its backlight setting with that of any CZone Display Interfaces set up to share backlight settings. → Note: CZone Config also needs to have the NSO evo3S set as a controller. # **Naviop** If this device is on the same NMEA 2000 network as a Naviop Loop system, this device can be used to operate the Naviop Loop system. For details, refer to the documentation following the Naviop system. ## **Mercury** If the unit is on the same NMEA 2000 network as a compatible Mercury Marine VesselView product or VesselView Link, specific features are automatically unlocked on the unit. When the features are enabled, the display may prompt the user for some basic configuration information. Refer to the VesselView® manual or engine supplier for further information. #### **Suzuki Marine** If the unit is on the same NMEA 2000 network as a Suzuki C10 color gauge, a dedicated Suzuki instrument panel is unlocked and automatically enabled. Data source selection is done the same way as for any regular NMEA 2000 sources. ## Yamaha engine integration If a compatible Yamaha gateway is connected to the NMEA 2000 network, a Yamaha engine icon is added to the Home page. For more information about configuration information, the Yamaha panel and the data displayed, and Troll control, refer to the Yamaha manual or the engine supplier. ## **Evinrude engine integration** If an Evinrude engine control head is available on the NMEA 2000 network, the Evinrude engines can be monitored and controlled from the unit. When the feature is also enabled in the advanced settings features dialog: - An Evinrude icon is added to the home page select it to display the engine instrument panel. - An Evinrude settings dialog is added use this dialog to change engine settings. - An Evinrude button is added to the control bar selecting this button opens the engine controller. Use the engine controller to control the engines. A maximum of two control heads and four engines is supported. For more information, refer to the engine manual or engine supplier. #### **Power-Pole** #### **Power-Pole anchors** This device can interface with the Power-Pole anchors via Bluetooth. When the anchor(s) are paired with this device, the Power-Pole button is added to the control bar. For more information about Bluetooth pairing and Power-Pole anchor operation, refer to the Operator manual. #### **Power-Pole Charge module** This device can interface with the Power-Pole Charge module via the C-Monster gateway. Only one gateway can work on the NMEA 2000 network at a time. When valid data is received from the gateway, the Charge button is added to the control bar. For more information about the battery charge functionality, refer to the Operator manual. For installation, wiring and setup information, refer to the Power-Pole documentation supplied with the Charge module. # **FLIR camera setup** Compatible FLIR cameras are plug and play when used in conjunction with a device acting as a DHCP host. For setup on networks not utilizing a DHCP host, refer to the website www.simrad-yachting.com, or contact technical support. # **Appendix** # **Dimensional drawings** ## 16" # 19" # 24" # **Technical specifications** #### NSO evo3S | Supply voltage 12/24 V DC (10 - 31.2 V DC min - max) | Display | | |--|-----------------------------|--| | Touch screen Viewing angles in degrees (typical value at contrast ratio = 10) Electrical Supply voltage Power consumption - Max 16" unit 40 W + - 4 W 19" unit 50 W + - 5 W Recommended fuse rating 16" unit 19" unit 19" unit 19" unit 24" unit 24" unit 19" unit 19" unit 19" unit 19" unit 19" unit 19" unit 10 A at 12 V DC / 3 A at 24 V DC 19" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range Storage temperature Waterproof rating Humidity EC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration NET Conserved Storage temperature 100 000 cycles of 20 G NET Conserved | Resolution | 1920 x 1080 | | Supply voltage 12/24 V DC (10 - 31.2 V DC min - max) | Brightness | 1000 nits | | Supply voltage 12/24 V DC (10 - 31.2 V DC min - max) | Touch screen | Full touch screen (multi-touch) | | Supply voltage 12/24 V DC (10 - 31.2 V DC min - max) | | 80° top/bottom, 80° left/right | | Power consumption - Max 16" unit 19" unit 20 W + - 4 W 19" unit 24" unit 80 W + - 5 W Recommended fuse rating 16" unit 19" unit 24" unit 10 A at 12 V DC / 3 A at 24 V DC 19" unit 10 A at 12 V DC / 5 A at 24 V DC
24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental 2000 Cycles of 20 G NMEA 2000 Tx (Micro-C) NMEA 2018 A W + - 4 W 40 Where and a to 4 of 24 V DC 40 A at 12 V DC / 3 A at 24 V DC 40 A at 12 V DC / 3 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC / 5 A at 24 V DC 40 A at 12 V DC | Electrical | | | 16" unit 19" unit 19" unit 24" unit 24" unit 80 W +- 4 W Recommended fuse rating 16" unit 7 A at 12 V DC / 3 A at 24 V DC 19" unit 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range Vaterproof rating Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G INTERFACE/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 NMEA 2000 NMEA 0183 Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Supply voltage | 12/24 V DC (10 - 31.2 V DC min - max) | | 19" unit 24" unit 80 W +- 4 W Recommended fuse rating 16" unit 7 A at 12 V DC / 3 A at 24 V DC 19" unit 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC 25 | Power consumption - Max | | | Recommended fuse rating 16" unit 10" A at 12 V DC / 3 A at 24 V DC 19" unit 7 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range -15°C to +55°C (5°F to 131°F) Storage temperature / -20°C to +60°C (4°F to 140°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | 16" unit | 40 W +- 4 W | | Recommended fuse rating 16" unit 16" unit 6 A at 12 V DC / 3 A at 24 V DC 19" unit 7 A at 12 V DC / 4 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range -15°C to +55°C (5°F to 131°F) Storage temperature -20°C to +60°C (4°F to 140°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G nterface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | 19" unit | 50 W +- 4 W | | 16" unit 16" unit 16" unit 19" unit 17 A at 12 V DC / 3 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range Storage temperature -20°C to +55°C (5°F to 131°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | 24" unit | 80 W +- 5 W | | 19" unit 24" unit 10 A at 12 V DC / 4 A at 24 V DC 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range Storage temperature -20°C to +55°C (5°F to 131°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Recommended fuse rating | | | 24" unit 10 A at 12 V DC / 5 A at 24 V DC Environmental Operating temperature range -15°C to +55°C (5°F to 131°F) Storage temperature -20°C to +60°C (4°F to 140°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | 16" unit | 6 A at 12 V DC / 3 A at 24 V DC | | ### Comparison of Control Cont | 19" unit | 7 A at 12 V DC / 4 A at 24 V DC | | Operating temperature range Storage temperature -20°C to +60°C (4°F to 140°F) Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G INTERFACE/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | 24" unit | 10 A at 12 V DC / 5 A at 24 V DC | | Storage temperature Waterproof rating Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Environmental | | | Waterproof rating IPX6 (when panel mounted correctly with only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G INTERFECTION OF THE PROOF | Operating temperature range | -15°C to +55°C (5°F to 131°F) | | only the front exposed) Humidity IEC 60945 Damp heat 66°C (150°F) at 95% relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Storage temperature | -20°C to +60°C (4°F to 140°F) | | relative (48 hr) Shock and vibration 100 000 cycles of 20 G Interface/Connectivity Ethernet 3x (RJ45) USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Waterproof rating | · | | ### Table 1 | Humidity | | | ### Table 10 Ethernet 3x (RJ45) USB 3x (USB-A) USB 3x (USB-A) USB 1x (Micro-C) | Shock and vibration | 100 000 cycles of 20 G | | USB 3x (USB-A) J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Interface/Connectivity | | | J1393 1x (Micro-C) NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | Ethernet | 3x (RJ45) | | NMEA 2000 1x (Micro-C) NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | USB | 3x (USB-A) | | NMEA 0183 4 ports Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | J1393 | 1x (Micro-C) | | Video output 1x high definition video output (1080p, no HDCP, HDMI-A) | NMEA 2000 | 1x (Micro-C) | | HDCP, HDMI-A) | NMEA 0183 | 4 ports | | The second secon | Video output | , , , , , | | Video input 2x composite video (BNC)
1x high definition video (1080p, HDCP 1.4,
HDMI-A) | Video input | | | Data card reader 1x slot (microSD) | Data card reader | 1x slot (microSD) | | Wireless Internal 802.11b/g/n | Wireless | Internal 802.11b/g/n | | Physical | Physical | | | Dimensions (W x H x D) Refer to "Dimensional drawings" on page 39 | Dimensions (W x H x D) | Refer to "Dimensional drawings" on page 39 | | Weight (display only) | Weight (display only) | | | 16" unit 3.9 kg (8.6 lbs.) | 16" unit | 3.9 kg (8.6 lbs.) | | 19" unit 4.8 kg (10.5 lbs.) | 19" unit | 4.8 kg (10.5 lbs.) | | 24" unit 7.8 kg (17.2lbs.) | 24" unit | 7.8 kg (17.2lbs.) | | Compass Safe Distance - Metric, imperial | 50 cm | |--|---| | Mounting type | Panel mount or bracket (optional accessory) | # **Supported data** # NMEA 2000 compliant PGN List ## NMEA 2000 PGN (receive) | 59392 | ISO Acknowledgement | |--------|--| | 59904 | ISO Request | | 60160 | ISO Transport Protocol, Data Transfer | | 60416 | ISO Transport Protocol, Connection M. | | 65240 | ISO Commanded Address | | 60928 | ISO Address Claim | | 126208 | ISO Command Group Function | | 126992 | System Time | | 126996 | Product Info | | 126998 | Configuration Information | | 127237 | Heading/Track Control | | 127245 | Rudder | | 127250 | Vessel Heading | | 127251 | Rate of Turn | | 127252 | Heave | | 127257 | Attitude | | 127258 | Magnetic Variation | | 127488 | Engine Parameters, Rapid Update | | 127489 | Engine Parameters, Dynamic | | 127493 | Transmission Parameters, Dynamic | | 127500 | Load Controller Connection State / Control | | 127501 | Binary Status Report | | 127503 | AC input status | | 127504 | AC Output Status | | 127505 | Fluid Level | | 127506 | DC Detailed Status | | 127507 | Charger Status | | 127508 | Battery Status | | 127509 | Inverter Status | | 128259 | Speed, Water referenced | | 128267 | Water Depth | | 128275 | Distance Log | | 129025 | Position, Rapid Update | | 129026 | COG & SOG, Rapid Update | | 129029 | GNSS Position Data | | 129033 | Time & Date | | 129038 | AIS Class A Position Report | | 129039 | AIS Class B Position Report | | 129040 | AIS Class B Extended Position Report | | 129041 | AIS aids to
Navigation | | 129283 | Cross Track Error | | | | | 129284 | Navigation Data | |--------|---| | 129539 | GNSS DOPs | | 129540 | AIS Class B Extended Position Report | | 129545 | GNSS RAIM Output | | 129549 | DGNSS Corrections | | 129551 | GNSS Differential Correction Receiver Signal | | 129793 | AIS UTC and Date Report | | 129794 | AIS aids to Navigation | | 129798 | AIS SAR Aircraft Position Report | | 129801 | Cross Track Error | | 129802 | AIS Safety Related Broadcast Message | | 129283 | Cross Track Error | | 129284 | Navigation Data | | 129539 | GNSS DOPs | | 129540 | GNSS Sats in View | | 129794 | AIS Class A Static and Voyage Related Data | | 129801 | AIS Addressed Safety Related Message | | 129802 | AIS Safety Related Broadcast Message | | 129808 | DSC Call Information | | 129809 | AIS Class B "CS" Static Data Report, Part A | | 129810 | AIS Class B "CS" Static Data Report, Part B | | 130060 | Label | | 130074 | Route and WP Service - WP List - WP Name & Position | | 130306 | Wind Data | | 130310 | Environmental Parameters | | 130311 | Environmental Parameters | | 130312 | Temperature | | 130313 | Humidity | | 130314 | Actual Pressure | | 130316 | Temperature, Extended Range | | 130569 | Entertainment - Current File and Status | | 130570 | Entertainment - Library Data File | | 130571 | Entertainment - Library Data Group | | 130572 | Entertainment - Library Data Search | | 130573 | Entertainment - Supported Source Data | | 130574 | Entertainment - Supported Zone Data | | 130576 | Small Craft Status | | 130577 | Direction Data | | 130578 | Vessel Speed Components | | 130579 | Entertainment - System Configuration Status | | 130580 | Entertainment - System Configuration Status | | 130581 | Entertainment - Zone Configuration Status | | 130582 | Entertainment - Zone Volume Status | | 130583 | Entertainment - Available Audio EQ Presets | | 130584 | Entertainment - Bluetooth Devices | | 130585 | Entertainment - Bluetooth Source Status | | | | ## NMEA 2000 PGN (transmit) | 60160 | ISO Transport Protocol, Data Transfer | |--------|---| | 60416 | ISO Transport Protocol, Connection M. | | 126208 | ISO Command Group Function | | 126992 | System Time | | 126993 | Heartbeat | | 126996 | Product Info | | 127237 | Heading/Track Control | | 127250 | Vessel Heading | | 127258 | Magnetic Variation | | 127502 | Switch Bank Control | | 128259 | Speed, Water referenced | | 128267 | Water Depth | | 128275 | Distance Log | | 129025 | Position, Rapid Update | | 129026 | COG & SOG, Rapid Update | | 129029 | GNSS Position Data | | 129283 | Cross Track Error | | 129285 | Navigation - Route/WP Information | | 129284 | Navigation Data | | 129285 | Route/Waypoint Data | | 129539 | GNSS DOPs | | 129540 | GNSS Sats in View | | 130074 | Route and WP Service - WP List - WP Name & Position | | 130306 | Wind Data | | 130310 | Environmental Parameters | | 130311 | Environmental Parameters | | 130312 | Temperature | | 130577 | Direction Data | | 130578 | Vessel Speed Components | # NMEA 0183 supported sentences #### TX/RX-GPS | Name | Description | RX | TX | |------|--|----|----| | DTM | Datum reference | Х | | | GGA | Global positioning system (GPS) fix data | Х | Х | | GLC | GLC Geographic position - Loran-C | | | | GLL | Geograpic position - Latitude/longitude | Х | Х | | GSA | GNSS DOP and active satellites | Х | Х | | GNS | GNSS fix data | Х | | | GSV | GNSS satellites in view | Х | Х | | VTG | Course over ground and ground speed | Х | Х | | ZDA | Time and date | Х | Х | # TX / RX - Navigation | Name | Description | RX | TX | |------|---|----|----| | AAM | Waypoint arrival alarm | | Х | | APB | Heading/track controller (autopilot) sentence B | | Х | | BOD | Bearing origin to destination | | Х | | BWC | Bearing and distance to waypoint - Great circle | | Х | | BWR | Bearing and distance to waypoint - Rhumb line | | Х | | RMB | Recommended minimum navigation information | | Х | | XTE | Cross-track error - measured | | Х | | RTE | Routes | Х | | | WPL | Waypoint location | Х | | #### TX/RX-Sonar | | RX | TX | |-----|----|----| | DBT | Х | Х | | DPT | Х | Х | | MTW | Х | Х | | VLW | Х | Х | | VHW | X | Х | ## TX/RX - Compass | Name | Description | RX | TX | |------|----------------------------------|----|----| | HDG | Heading, deviation and variation | Х | Х | | HDT | Heading true | Х | | | THS | True heading and status | Х | Х | | ROT | Rate of turn | Х | | #### TX / RX - Wind | | RX | TX | |-----|----|----| | MWD | Х | Х | | MWV | Х | Х | #### TX/RX-AIS/DSC | Name | Description | RX | TX | |------|---------------------------------------|----|----| | DSC | Digital selective calling information | Х | | | DSE | Expanded digital selective calling | Х | | | VDM | AIS VHF data-link message | Х | | | VDO | AIS VHF data-link own-vessel report | Х | | → *Note:* AIS sentences are not bridged to or from NMEA 2000. #### TX/RX-MARPA | | RX | TX | |-----|----|----| | TTL | | Х | | TTM | | Х | → *Note:* These are only output sentences. ## **PGN/SPN list** | J1939 SPN/PGN | Description | NMEA2000 PGN | |---------------|---|--------------| | 190 / 61444 | Engine Speed | 127488 | | 102 / 65270 | Engine Turbocharger Boost
Pressure | 127488 | | 100 / 65263 | Engine Oil Pressure | 127489 | | 175 / 65262 | Engine Oil Temperature 1 | 127489 | | 110 / 65262 | Engine Coolant Temperature | 127489 | | 167 / 65271 | Alternator Potential (Voltage) | 127489 | | 183 / 65266 | Engine Fuel Rate | 127489 | | 247 / 65253 | Engine Total Hours of Operation | 127489 | | 109 / 65263 | Engine Coolant Pressure | 127489 | | 94 / 65263 | Engine Fuel Delivery Pressure | 127489 | | 92 / 61443 | Engine Percent Load at Current
Speed | 127489 | | 513 / 61444 | Actual Engine - Percent Torque | 127489 | | 189 / 65214 | Engine Rated Speed | 127498 | | 237 / 65260 | Vehicle Identification Number | 127498 | | 234 / 65242 | Software Identification | 127498 | | 523 / 61445 | Transmission Current Gear | 127493 | | 127 / 65272 | Transmission Oil Pressure | 127493 | | 177 / 65272 | Transmission Oil Temperature | 127493 | - → **Note:** The unit will act as a gateway and resend received J1939 PGN/SPN over NMEA 2000. - → **Note:** Some data are only sent when requested, refer to "J1939 settings" on page 35. For communication details refer to the engine manufacturer.